
 

 

Variability of particulate organic carbon concentration in the north polar 

Atlantic based on ocean color observations with Sea-viewing Wide Field-of-

view Sensor (SeaWiFS) 

 

 

Malgorzata Stramska  

Hancock Institute for Marine Studies, University of Southern California, Los Angeles, 

California, USA 

 

Dariusz Stramski  

Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at 

San Diego, La Jolla, California, USA 

 

 

Complete citation: Stramska, M., and D. Stramski (2005), Variability of particulate organic carbon 

concentration in the north polar Atlantic based on ocean color observations with Sea-viewing Wide Field-

of-view Sensor (SeaWiFS), J. Geophys. Res., 110, XXXXXX, doi:10.1029/2004JC002762. 
 

 1



Abstract. We use satellite data from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to 

investigate distributions of particulate organic carbon (POC) concentration in surface waters of 

the north polar Atlantic Ocean during the spring–summer season (April through August) over a 

6-year period from 1998 through 2003. By use of field data collected at sea, we developed 

regional relationships for the purpose of estimating POC from remote-sensing observations of 

ocean color. Analysis of several approaches used in the POC algorithm development and match-

up analysis of coincident in situ–derived and satellite-derived estimates of POC resulted in 

selection of an algorithm that is based on the blue-to-green ratio of remote-sensing reflectance 

Rrs (or normalized water-leaving radiance Lwn). The application of the selected algorithm to a 6-

year record of SeaWiFS monthly composite data of Lwn revealed patterns of seasonal and 

interannual variability of POC in the study region. For example, the results show a clear increase 

of POC throughout the season. The lowest values, generally less than 200 mg m–3, and at some 

locations often less than 50 mg m–3, were observed in April. In May and June, POC can exceed 

300 or even 400 mg m–3 in some parts of the study region. Patterns of interannual variability are 

intricate, as they depend on the geographic location within the study region and particular time of 

year (month) considered. By comparing the results averaged over the entire study region and the 

entire season (April through August) for each year separately, we found that the lowest POC 

occurred in 2001 and the highest POC occurred in 2002 and 1999. 
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1. Introduction 

The uncertainty in estimates of various carbon reservoirs and fluxes on Earth lead to 

difficulties in balancing the contemporary carbon budget on a global scale [e.g., Longhurst, 

1991]. One reservoir of substantial interest is the particulate organic carbon (POC) in surface 

ocean, which includes the autotrophic and heterotrophic microorganisms and biologically 

derived detrital particles suspended in water. Changes in POC concentration in surface waters 

result from biological production, transformations of POC (e.g., remineralization, excretion of 

organic carbon), and export of POC to the interior of the ocean. Sinking of POC is part of the 

biological pump, which provides a mechanism for storing carbon in the deep ocean, a long-term 

sink for atmospheric CO2 [e.g., Volk and Hoffert, 1985; Longhurst and Harrison, 1989]. 

Temporal and spatial variations of POC concentration occur in the upper ocean over a broad 

range of scales, so they cannot be fully characterized on the basis of measurements taken from 

ships or other in situ observing platforms alone. Satellite-borne sensors provide a unique means 

for collecting essential information owing to capability of uninterrupted long-term observations 

of surface ocean with global coverage. Such observations are well recognized as an important 

part of research in ocean biogeochemistry. The capability to estimate surface chlorophyll a 

concentration (Chl) from remotely sensed ocean color has long been established and utilized 

[e.g., Clarke et al., 1970; Gordon and Morel, 1983; Yoder et al., 1993; McClain et al., 2004]. 

Although satellite-derived Chl data improved substantially our understanding of phytoplankton 

biomass and primary production distributions within the world’s oceans, the major currency of 

interest for ocean biogeochemistry and its role in climate change is carbon, not chlorophyll a. 

Unfortunately, POC cannot be estimated from Chl with consistently good accuracy because the 

POC/Chl ratio in the ocean is highly variable and can be difficult to predict. Although efforts to 
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develop methods for estimating POC from remote sensing of ocean color have been recently 

undertaken [Stramski et al., 1999; Loisel et al., 2001; Mishonov et al., 2003], this subject is still 

in its infancy and POC is not yet included in NASA’s list of standard ocean color data products. 

The primary goal of this study is to develop and evaluate regional algorithms for estimating 

POC concentration in surface waters from satellite ocean color observations in the north polar 

Atlantic. Using field data collected in that region, we examine three approaches for developing 

regional algorithms for estimating POC. We compare these regional algorithms with two other 

POC algorithms that were derived with data from other geographical regions. Match-up analysis 

of coincident in situ–derived and satellite-derived estimates of POC allows us to select the best 

performing regional POC algorithm for the north polar Atlantic. We use the selected algorithm in 

conjunction with satellite data from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to 

characterize variability of surface POC in the study region during the spring–summer season 

over a 6-year period from 1998 through 2003. 

 

 

2. Data and Methods 

This study includes three distinct components; first, development of the POC algorithms; 

second, validation of the algorithms (to the extent possible with limited availability of adequate 

validation data), and third, application of the algorithms to satellite SeaWiFS data. Different 

types of data are used in these components. In brief, for the development of POC algorithms, 

only field data collected at sea are used. For the algorithm validation (i.e., match-up analysis), 

coincident field data and HRPT (High Resolution Picture Transmission) satellite data from 
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SeaWiFS are used. For applications, our algorithms are used in conjunction with monthly 

composite imagery of SeaWiFS. 

 

2.1. Field Measurements 

Field data were collected in June–August of 1998, 1999, and 2000 during three cruises on 

R/V Oceania operated by Institute of Oceanology, Polish Academy of Sciences, and in April–

May 2003 during a cruise on R/V Polarstern operated by German Alfred Wegener Institute for 

Polar and Marine Research. The cruises on R/V Oceania covered the north polar Atlantic 

between 70ºN and 80ºN within the meridional zone between 1ºE and 20ºE (see Stramska et al. 

[2003] for locations of stations). Figure 1 shows the locations of stations on R/V Polarstern. The 

study region covered by the cruises includes waters of the Norwegian Sea, the confluence zone 

of the Norwegian Sea and Barents Sea, the West Spitsbergen Current, and the Greenland Sea. 

 

2.1.1. Water Sample Analyses 

Suspended particles for the analysis of POC and Chl were collected by filtration of water 

samples onto Whatman glass fiber filters (GF/F) under low vacuum. The POC samples were 

collected on precombusted filters, dried at 55ºC, and stored until postcruise analysis in the 

laboratory. POC was determined by combustion of sample filters [Parsons et al., 1984]. Before 

this analysis, for removal of inorganic carbon, 0.25 mL of 10% HCl was applied to each sample 

filter and the acid-treated filters were dried at 55ºC. During the cruises on R/V Oceania 

relatively few samples for POC analysis were collected. The POC data from R/V Oceania will 

not be used in the development of POC algorithms (but optical data collected on R/V Oceania 

will be used in the algorithm development as described below). However, five POC 
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measurements from R/V Oceania will be used in the match-up comparisons of coincident in 

situ–derived POC and satellite-derived POC with the purpose of validating the POC algorithms. 

The POC data obtained on the R/V Polarstern cruise will be used in the POC algorithm 

development. In total seventy seven POC estimates obtained on R/V Polarstern within the top 

well-mixed layer of surface ocean (depths ≤ 50 m) are used in this study. Replicate samples for 

POC determinations were usually taken and these determinations were averaged for final use. 

In this paper we use the chlorophyll a concentration (Chl) determined by high-performance 

liquid chromatography (HPLC) [Bidigare and Trees, 2000] for samples that were collected on 

the R/V Polarstern cruise and stored in liquid nitrogen until postcruise analysis. Chl was 

calculated as a sum of chlorophyll a and derivatives (chlorophyllide a, chlorophyll a allomers 

and epimers). POC and Chl determined from the above-described analyses of discrete water 

samples are referred to as in situ POC and in situ Chl estimates. 

 

2.1.2. Optical Profiles 

The time difference between the collection of water samples and acquisition of in situ optical 

data was usually less than an hour. Detailed description of underwater optical measurements is 

given elsewhere [Stramska et al., 2003] and the methodology of these measurements is 

consistent with the SeaWiFS protocols [Mueller and Austin, 1995; Mueller, 2003]. Among the 

various quantities measured, included were the underwater vertical profiles of downwelling 

irradiance, Ed(z, λ), and upwelling radiance, Lu(z, λ), where z is depth and λ is wavelength of 

light in vacuum. These radiometric measurements were made with a freefall spectroradiometer 

(SPMR, Satlantic, Inc.) away from ship perturbations. Most of these measurements (~80%) were 

made under cloudy skies and solar zenith angle between 47º and 65º. From the profiles of Ed(z, 
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λ) and Lu(z, λ), the spectral remote-sensing reflectance, Rrs(λ), was calculated with Prosoft 6.3 

software (Satlantic, Inc.). The Rrs(λ) values are reported for light wavelengths λ that correspond 

to nominal center wavelengths (within ±0.5 nm) for spectral bands (bandwidth of about 10 nm) 

of the SPMR instrument. The normalized water-leaving radiances, Lwn(λ), were also calculated 

with Prosoft as a product of Rrs(λ) and the assumed values for extraterrestrial solar irradiance 

Fo(λ) (e.g., Prosoft used Fo(443) = 185.63 and Fo(555) = 186.25 mW cm–2 µm–1). 

During all cruises we also used a multisensor data logger system designed for measurements 

of vertical profiles of physical properties and inherent optical properties (IOPs) of seawater 

[Stramska et al., 2003]. Measurements with beam transmissometers provided estimates of the 

beam attenuation coefficient of particles, cp, at 488 and 660 nm. Measurements with a 

Hydroscat-6 sensor (HobiLabs, Inc.) allowed the estimation of the backscattering coefficient of 

seawater, bb, at six wavelengths. In this study we processed the Hydroscat-6 data with Hydrosoft 

software (version 2.6 of December 2002, Hobilabs, Inc.), which includes corrections suggested 

by Boss and Pegau [2001]. 

During processing of optical data, all profiles were first carefully inspected for quality, for 

example for the presence of possible noise in the near-surface data. Doubtful or noisy data were 

removed from the analysis. Typically we did not consider data acquired within the top 2–3 m of 

the ocean. The remaining data were binned into 1-m bins (radiometric data) and 2-m bins (IOP 

data) and averaged within each bin to provide the final depth profiles. 

Because of cruise schedule and sea ice conditions, few underwater irradiance and radiance 

measurements were made on R/V Polarstern in 2003, and these measurements are not used in 

the development of our regional POC algorithms. For the algorithm development, we use 

underwater radiometric measurements (i.e., Rrs and Lwn data) from the R/V Oceania cruises only. 
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The IOP data (i.e., cp and bb) used in the algorithm development are from both R/V Oceania and 

R/V Polarstern. As mentioned above, the POC data used in the algorithm development are from 

R/V Polarstern only. 

 

2.2. Satellite Data 

The POC algorithms were applied to satellite data collected with the SeaWiFS instrument 

over a period of 6 years from 1998 through 2003. These data were obtained from the NASA 

Goddard Earth Sciences Data and Information Services Center (DAAC). The SeaWiFS provides 

global coverage of water-leaving radiance at eight spectral bands in the visible and near-infrared 

spectral region approximately every two days [e.g., Hooker and McClain, 2000]. To estimate 

water-leaving radiances, the standard data processing procedures at NASA involve atmospheric 

correction and removal of pixels with land, ice, clouds, and heavy aerosol load [e.g., Gordon and 

Wang, 1994]. The standard data product of surface chlorophyll a concentration is determined 

from satellite-derived water-leaving radiances using the empirical algorithm OC4v4 [O’Reilly et 

al., 1998; 2000]. 

Our analysis of POC in the north polar Atlantic utilizes level 3 binned monthly SeaWiFS 

data products of normalized water-leaving radiances Lwn(λ) and surface chlorophyll a 

concentration, where each bin corresponds to a surface grid cell of approximately 81 square 

kilometers in size (reprocessing version 4). The data cover the north polar Atlantic between 

70ºN–80ºN and 11ºE–11ºW. For each year from 1998 through 2003, monthly composites for the 

spring–summer season from April through August were selected for the analysis. The loss of 

satellite data due to cloud cover often limits the availability of daily or 8-day composite 

SeaWiFS data products; hence we use the monthly composites. For the remaining portion of the 
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year, there is no satellite data or there is insufficient amount of data in the study region because 

of sea ice, cloudy skies, or the lack of daylight. As our interest is focused on large-scale patterns, 

final satellite-derived results that illustrate the surface POC distributions in the study region are 

binned to 1º x 1º grid to filter out the smaller-scale variability. 

We note that although SeaWiFS data are acquired near local noon, in polar regions this is 

always done at a relatively high solar zenith angle (SZA). For example, in our study region at 

75ºN, SZA ranges at noon from about 65º in mid-April to 51.5º in mid-June. The low solar 

elevations at high latitudes pose particular challenges for accurate remote sensing, which are 

associated primarily with relatively low levels of water-leaving radiance (i.e., low ocean color 

signal) and relatively long path lengths of solar photons in the atmosphere (i.e., high atmospheric 

'noise'). These challenges underscore a need for validating ocean color algorithms by means of 

comparison of coincident in situ data and satellite-derived data products. For validating our POC 

algorithms, we compare coincident in situ POC estimates and satellite-derived POC estimates 

from HRTP SeaWiFS data (i.e., high spatial resolution SeaWiFS data of about 1.1 km at nadir) 

obtained under cloud-free skies on the same day and at the same geographical location as in situ 

POC determinations. The pixels with the HRPT data included the position of ship station. The 

time difference between the HRPT SeaWiFS data and in situ observations was less than 6 hours. 

In some cases not one but two SeaWiFS overpasses during the same day were matched with one 

in situ measurement. 

 

3. POC Algorithms 

3.1. Background 
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Stramski et al. [1999] showed that POC concentration in the surface ocean can be estimated 

from satellite ocean color imagery. Their algorithm involved two empirical relationships derived 

from field data collected in the Southern Ocean. One relationship links the surface POC with the 

optical backscattering coefficient by particles, bbp. The other relationship links the remote-

sensing reflectance, Rrs, with the backscattering coefficient of seawater, bb = bbw + bbp (where bbw 

is the backscattering coefficient of pure seawater). When the algorithm was applied to remotely 

sensed data, bb (and hence bbp) was calculated first from satellite-derived Rrs, and then POC was 

calculated from bbp. Both optical quantities involved in the algorithm were measured in the green 

spectral region. This was justified by an intent to minimize the effect of the absorption 

coefficient of seawater, a, on the algorithm performance. In the green spectral region, a is 

expected to exhibit a relatively smaller change than bb if waters with a wide range of POC are 

considered. We note that the use of absolute magnitude of satellite-derived Rrs at a single wave 

band makes this algorithm particularly sensitive to potential errors in atmospheric correction. 

However, the algorithm possesses a conceptual strength that stems from a two-step approach, in 

which the constituent concentration is related to the inherent optical property (IOP) of seawater 

(here POC and bbp, respectively) and the apparent optical property (AOP) of the ocean is related 

to IOP of seawater (here Rrs and bb, respectively). 

The relationships involved in the Stramski et al. [1999] algorithm have theoretical, albeit 

somewhat confounded, basis. The relationships between Rrs and IOPs have been thoroughly 

examined in the past. One important approach has been based on radiative transfer modeling, 

which showed that Rrs is, to first approximation, proportional to bb and inversely proportional to 

a [Gordon et al., 1975; Gordon and Morel, 1983; Kirk, 1984; Morel and Prieur, 1977]. The 

coefficient of proportionality is not constant, however. It depends on water optical properties and 
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light conditions at the sea surface [Bukata et al., 1994; Kirk, 1991; Morel and Gentili 1991, 

1993]. These effects, including the influence of absorption on Rrs, confound the direct relation 

between Rrs and bb. Therefore no universal relationship between Rrs and bb is expected to hold 

over a wide range of water bodies and light conditions. Nevertheless, Stramski et al. [1999] 

showed a consistency in the Rrs versus bb relationship in the green band for two different water 

bodies within the Southern Ocean; the Ross Sea and the Antarctic Polar Front Zone (APFZ). 

Some basis for the relationship between POC and light scattering exists at the level of both 

the bulk (volume) properties and the individual particles. At the level of individual particles, 

carbon content of planktonic cells was shown to be coupled with particle size [Verity et al., 1992; 

Montagnes et al., 1994] and refractive index [Stramski, 1999; DuRand et al., 2002]. Because 

particle size and refractive index are primary determinants of particle scattering, there exists 

linkage between carbon content and scattering of individual particles. The bulk properties, POC 

and bbp, depend not only on the single particle properties but also on particle concentrations in 

water. Under simplistic scenario that relative composition of particulate matter in water remains 

constant, both POC and bbp would change in proportion to varying concentration of POC-bearing 

particles. The actual relationship between POC and bbp in the ocean will be, however, more 

complex than that driven solely by the particle concentration effect. This is due to variations in 

the distribution of POC among different particle types/sizes and variations in the particulate 

composition accompanied by changes in particle size, shape, and refractive index distributions 

that influence bbp. One can therefore expect that various water bodies will exhibit different 

magnitude of backscattering per POC content in water. Stramski et al. [1999] observed that the 

relation between POC and bbp differs in a systematic way between the geographic regions of the 

Ross Sea and APFZ. As a result of this difference, their APFZ algorithm predicts lower values of 
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POC from Rrs than the Ross Sea algorithm (typically by a factor of 2–4). These results support 

the use of a regional approach in which the world's oceans are partitioned into provinces, within 

which certain characteristic parameters or relationships can be assumed quasi-constant, at least 

during a particular season [Platt and Sathyendranath, 1988; Mueller and Lange, 1989]. 

Because of the first-order effect of particle concentration on the bulk scattering of seawater, 

bbp is expected to covary with the total particulate scattering coefficient, bp, and the particulate 

beam attenuation coefficient, cp (especially in the spectral regions where particulate absorption is 

weak). Therefore it is not surprising that data collected in different parts of the world’s ocean 

show some (often significant) degree of correlation between cp or bp and POC [e.g., Gardner et 

al., 1993; Marra et al., 1995; Loisel and Morel, 1998]. Such relationships were also supported 

by laboratory experiments with phytoplankton cultures [e.g., Stramski and Morel, 1990; Stramski 

and Reynolds, 1993]. These results open up a possibility that POC algorithms can be 

alternatively developed with the POC versus cp or versus bp relationships. Because cp has been 

routinely measured with in situ beam transmissometers for many years, it seems useful to 

explore this option. 

Recent attempt in this direction is described by Mishonov et al. [2003]. Their method is 

based on two relationships. One relationship is between field measurements of cp(660) in the 

South Atlantic and satellite (SeaWiFS) ocean color data products collected in the same region 

over the same season (austral summer) but a decade later. The second relationship is between 

POC and cp(660) established independently from field measurements in the North Atlantic. In 

the final algorithm, POC calculated from cp(660) is linked to the satellite ocean color data 

product. The SeaWiFS data product that provided the highest correlation with POC calculated 

from cp(660), was the normalized water-leaving radiance in the green spectral band, Lwn(555). 
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Other products tested, the surface chlorophyll concentration, chlorophyll integrated over the first 

attenuation depth, and diffuse attenuation coefficient for downward irradiance at 490 nm, 

showed lower correlation. Mishonov et al. used the algorithm based on Lwn(555) in conjunction 

with SeaWiFS imagery for illustrating POC distributions in the South Atlantic. 

 

3.2. Regional POC Algorithms for the North Polar Atlantic 

For the development of POC algorithms for the north polar Atlantic we evaluated the 

following relationships: POC versus Chl, POC versus bb(589), POC versus cp(660), bb(589) 

versus Rrs(555), and cp(660) versus Rrs(443)/Rrs(555) (and alternatively cp(660) versus 

Lwn(443)/Lwn(555)). The relationships between POC versus bb(589) and POC versus cp(660) 

were obtained by matching POC estimates from discrete water samples collected at a given depth 

and the IOPs measured within a 2-m bin that corresponds to the depth of POC sample. Figure 2 

shows example profiles of cp(660) and the corresponding POC values determined at discrete 

depths. The thickness of surface layer that was relatively well mixed was determined from 

inspection of each profile. Only the data collected within this surface layer were used to establish 

the relationships between POC and IOPs. Most of these data were collected at depths between 

the surface and 25 m. We did not use data from depths below 50 m and only 15–20% of data 

included in the relationships between POC and IOPs come from depths ≥ 30 m. With regard to 

the relationships bb(589) versus Rrs(555) and cp(660) versus Rrs(443)/Rrs(555) (or cp(660) versus 

Lwn(443)/Lwn(555)), we used the bb(589) and cp(660) values averaged between the depths of 3 

and 5 m and the Rrs(λ) or Lwn(λ) values estimated from concurrent measurements of underwater 

radiometric profiles. 

 

 13



3.2.1. Algorithm 1 

Our first algorithm (referred to as algorithm 1) consists of two relationships, namely cp(660) 

versus Rrs(443)/Rrs(555) and POC versus cp(660). Alternatively, the first relationship of this 

algorithm is based on Lwn(443)/Lwn(555) instead of Rrs(443)/Rrs(555) (Table 1). The relationship 

between cp(660) and Lwn(443)/Lwn(555) is shown in Figure 3a. This relationship was determined 

from in-water optical data collected on R/V Oceania in 1998, 1999, and 2000. The POC versus 

cp(660) relationship was determined from field data collected on R/V Polarstern in 2003 (Figure 

3b). This relationship is compared with similar relationships established previously in other 

oceanic regions (Figure 3c). When applied to remotely sensed data, algorithm 1 operates in such 

a way that cp(660) is derived first from the satellite-derived blue-to-green ratio of Rrs or Lwn. 

Then the POC versus cp(660) relationship is used to estimate surface POC concentration. 

The main reason for using cp(660) in algorithm 1 is the availability of data sets that were 

collected concurrently. Specifically, whereas a relatively large set of POC and IOP data but few 

underwater radiometric data were collected on R/V Polarstern, a substantial set of IOP and 

radiometric data with few POC data were collected on the R/V Oceania cruises. This situation 

resulted from differences in research goals and logistics of the cruises, sea ice conditions, and 

episodes of malfunctioning of different instruments. Had we have available a sufficiently large 

set of concurrent measurements of POC and Rrs or Lwn band ratios, algorithm 1 would have been 

developed in terms of a direct relation between these variables without use of cp(660). We also 

note that our data suggest that the use of 490 nm and 555 nm (not shown here) would be at least 

as good as 443 nm and 555 nm for this type of band ratio algorithm. However, the number of our 

radiometric data at 490 nm is limited because the SPMR spectroradiometer experienced a failure 
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at 490 nm spectral channel during a significant portion of our cruises. Hence we use 443 nm in 

our algorithm 1. 

Although algorithm 1 involves cp(660), it is conceptually different from that of Mishonov et 

al. [2003], because we use the spectral ratio of Lwn rather than Lwn at a single wavelength. It is 

also important to realize that our algorithm 1 could be viewed simply as a one-step algorithm 

based on a relationship between the blue-to-green ratio of Lwn and POC. This is because there 

seems to be no profound basis for the relationship between Lwn(443)/Lwn(555) and cp(660), so 

here the role of cp(660) is merely to provide an intermediate proxy for POC. As mentioned 

above, we did not establish the direct relationship between Lwn (or Rrs) band ratio and POC from 

our cruises because we did not have a large enough number of concurrent underwater 

radiometric and POC data. Such a direct relationship forms, however, a basis of algorithm 4 that 

is derived from historical data from other geographic regions (see discussion below). 

By linking POC to the blue-to-green ratio of Lwn or Rrs, algorithms 1 and 4 are conceptually 

similar to the common approach that has been used in the empirical chlorophyll algorithms for 

many years [e.g., O’Reilly et al., 1998; 2000]. In the case of chlorophyll, this approach relies on 

variations in the reflectance ratio, which are driven largely by changes in the absorption 

coefficient of seawater associated with varying concentration of pigment-containing 

phytoplankton. In the case of POC, this type of algorithm also takes advantage of variations in 

the absorption coefficient that is associated with all kinds of POC-containing particles, including 

detritus and heterotrophic organisms in addition to phytoplankton. Because the absorption 

coefficients of all POC particle types are expected to show an increase from the green toward the 

blue spectral region, all these particle types are also expected, at least to first approximation, to 

exert a qualitatively similar effect on the blue-to-green ratio of normalized water-leaving 
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radiance or ocean reflectance. This is essentially a basis for our regional algorithm 1 (as well as 

algorithm 4 described below). 

 

3.2.2. Algorithm 2 

The second regional POC algorithm (referred to as algorithm 2) is a two-step approach, in 

which the IOP is linked to POC and the AOP is linked to the IOP (Table 1). The IOP is the 

backscattering coefficient at 589 nm, bb(589). The AOP is the remote-sensing reflectance at 555 

nm, Rrs(555) (or alternatively Lwn(555). Both relationships have been selected on the same 

theoretical grounds as discussed above with regard to the Stramski et al. [1999] algorithm. When 

applied to remotely sensed data from satellite observations, algorithm 2 operates in such a way 

that bb(589) is first calculated from the satellite-derived Rrs(555) or Lwn(555) and then POC is 

calculated from bb(589). The relationship between bb(589) and Rrs(555) was established from our 

in-water optical measurements made in 1998, 1999, and 2000 on R/V Oceania, whereas the 

relationship between POC and bb(589) was derived from the POC and bb(589) measurements 

made in 2003 on R/V Polarstern (Figure 4). Note that the extrapolation of the regression formula 

describing POC versus bb(589) to POC = 0 yields bb(589) of 0.00767 m–1, which is very close to 

the theoretical value of 0.0075 m–1 for pure seawater backscattering at 589 nm [e.g., Smith and 

Baker, 1981]. 

Although algorithm 2 is conceptually similar to that of Stramski et al. [1999], there are a few 

slight differences. Here we use the total backscattering coefficient in both steps of the algorithm, 

whereas Stramski et al. used the particulate backscattering in the step that links backscattering 

with POC. Second, we use bb at 589 nm because during our cruises the Hydroscat-6 instrument 

experienced no failure in this spectral band and because this band still represents the middle 
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portion of visible spectrum with relatively small variations in absorption. In the north polar 

Atlantic we collected more bb data of good quality at 589 nm than at 555 nm. Stramski et al. used 

bbp at 510 nm because this channel provided data of consistently good quality on their cruises in 

the Southern Ocean and their Hydroscat-6 was not equipped with a 555-nm channel. 

Importantly, both algorithms use the wave bands in the green spectral region, where large 

changes in POC are accompanied by relatively large changes in bb and relatively smaller changes 

in the absorption coefficient. Hence a reasonably good relationship is anticipated between Rrs (or 

Lwn) and POC calculated from bb or bbp. 

 

3.2.3. Algorithm 3 

Although the POC/Chl ratio can vary over broad range in the ocean [e.g., Chung et al., 

1996], these variables may often show a significant correlation, especially if the data are 

regionally and seasonally constrained. Our third regional POC algorithm (referred to as 

algorithm 3), is described by a relationship between POC and Chl obtained from measurements 

on the R/V Polarstern cruise (Figure 5 and Table 1). We note that our POC and Chl data suggest 

that waters examined during that cruise were characterized by a relatively low POC at any given 

Chl value. During the summer cruises on R/V Oceania, we generally observed higher values of 

POC at given Chl values (not shown). In remote-sensing applications, the input to algorithm 3 is 

the NASA's standard satellite-derived global data product of surface chlorophyll a concentration 

(currently estimated from the OC4 algorithm). 

It is important to note that our regional algorithms were developed with data from open 

ocean waters where organic carbon-containing particles of biological origin usually dominate the 

particulate optical properties [e.g., Morel and Prieur, 1977; Smith and Baker, 1978]. In waters 
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that are optically more complex (e.g., Spitsbergen coastal region characterized by glacial 

discharge of minerogenic particulate matter), our algorithms may be subject to large error. This 

source of error is well known for the Chl algorithms [e.g., Woźniak and Stramski, 2004] and it is 

also expected in the POC algorithms. 

 

3.3. Other POC Algorithms 

The match-up data set for validating our regional POC algorithms, that is, for comparing 

coincident in situ estimates of POC and satellite-derived estimates of POC based on cloud-free 

HRPT imagery from SeaWiFS, is small for our cruises in the north polar Atlantic (see Section 

4.2 below). This is largely caused by predominantly cloudy skies during the cruises. To provide 

an additional means for testing our regional algorithms, the POC estimates from these regional 

algorithms will be compared with POC estimates obtained from two other algorithms that are 

based on data from other geographical regions. These two algorithms are described below. 

The POC algorithm 4 is a correlational algorithm similar to common algorithms for 

estimating global distributions of surface Chl from ocean color measurements. In such 

algorithms the blue-to-green ratio of Rrs or Lwn is used to calculate Chl [e.g., O’Reilly et al., 

1998, 2000]. Our algorithm 4 is based on the relationship between surface POC concentration 

and remote-sensing reflectance ratio Rrs(443)/Rrs(555) [or Rrs(490)/Rrs(555)] established from 

field data collected in various geographical regions of the world's ocean (Figure 6 and Table 1). 

The data presented in Figure 6 were obtained from the public databases of U.S. Joint Global 

Ocean Flux Study (JGOFS) and the NASA Sensor Intercomparison for Marine Biological and 

Interdisciplinary Ocean Studies (SIMBIOS). Specifically, we selected some data from the 

following field projects: CalCOFI in waters off California, BATS near Bermuda Islands in the 
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subtropical north Atlantic, HOTS near Hawaii in the North Pacific, JGOFS in the Arabian Sea, 

and JGOFS in the Southern Ocean. For this data set, both reflectance ratios perform similarly in 

terms of POC prediction. For our further analysis we choose Rrs(443)/Rrs(555). 

Finally, we test the POC algorithm 5 that estimates POC from Lwn(555) (Table 1). This 

algorithm was developed for the austral summer season in the South Atlantic by Mishonov et al. 

[2003] as already briefly described in section 3.1. 

 

4. Results and Discussion 

In section 4.1 we compare the POC estimates 1–5 obtained by application of algorithms 1–5  

to the same set of SeaWiFS data. In section 4.2 we present match-up comparisons of the satellite-

derived POC based on HRPT SeaWiFS imagery with available coincident in situ data of POC. In 

section 4.3 we demonstrate the POC variability in the study region over a 6-year period on the 

basis of the application of our algorithm 1 to SeaWiFS monthly composite imagery. In the 

description below the term ‘monthly POC’ (or, for example, ‘April POC’) refers to the POC 

concentration in surface waters estimated from a monthly (for example, April) composite of 

SeaWiFS data. The term ‘seasonal POC’ refers to an average of five monthly POC estimates 

(April through August). The term POC estimate 1 refers to POC estimated from algorithm 1, 

POC estimate 2 refers to POC estimated from algorithm 2, etc. 

 

4.1. Comparison of POC Estimates From Different Algorithms 

Figure 7 compares the POC estimates from the five algorithms whose input is the SeaWiFS 

monthly composite data for May 2003 at transects along 71º, 75º and 79ºN in the north polar 

Atlantic. The POC algorithms vary widely in the prediction of POC concentration. The regional 
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algorithm 1 for the north polar Atlantic and algorithm 4 produce consistently similar estimates of 

POC for all the data presented. This consistency is remarkable given that algorithm 4 is based on 

data from several regions far from the north polar Atlantic. The POC concentrations derived 

directly from the SeaWiFS Chl using the regional algorithm 3 are consistently and significantly 

lower than the POC estimates 1 and 4. Because this result is for May 2003 when the in situ POC 

and Chl data were actually collected for the development of algorithm 3, it seems unlikely that 

these differences between algorithm 3 and algorithms 1 and 4 in Figure 7 are caused by highly 

inadequate relationship between in situ POC and in situ Chl. The presence of systematic error in 

the satellite Chl derived from the current NASA global chlorophyll algorithm in the north polar 

Atlantic [Stramska et al., 2003] may be, at least partly, responsible for the differences. 

The regional algorithm 2 exhibits variable behavior when compared to the prediction of 

algorithms 1 and 4 (Figure 7). There is a good agreement between algorithms 1, 2, and 4 for 

most data points along the 71ºN transect (with the exception of the section between 4ºW and 

7ºW). The eastern and western parts of the 75ºN transect also show good agreement between the 

three algorithms. The major discrepancies are observed along 75ºN between 1ºE and 6ºW where 

the POC estimate 2 is significantly lower (occasionally more than 10 times) than the POC 

estimates 1 and 4. This tendency for producing lower POC values is also clearly seen for most 

data points that represent algorithm 2 along 79ºN. In a few extreme cases, the POC estimates 2 

assumed unrealistic (negative) values at 75ºN. This may be indicative of large error in the 

retrieval of Lwn(555) and Rrs(555) from SeaWiFS data rather than such a large problem in the in-

water relationships defining algorithm 2. Algorithm 2 is based on a single wave band so it 

depends critically on the accuracy of the estimation of absolute magnitude of satellite-derived 
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Lwn(555) and Rrs(555). Hence this algorithm is particularly sensitive to atmospheric correction 

and other error sources in the satellite-derived water-leaving radiance. 

Algorithm 5 consistently shows large underprediction of POC compared to algorithms 1 and 

4 (Figure 7). Because both algorithm 2 and algorithm 5 use essentially the same SeaWiFS data 

product, Lwn(555), for determining POC, the coincidence of very low estimates 2 and 5 over 

some portions of the 75ºN and 71ºN transects supports the notion that the satellite-derived 

Lwn(555) could be in large error in those particular areas. We note, however, that the POC 

estimates 5 are generally quite different than those from our regional algorithm 2. Whereas 

algorithm 2 often produces POC that is consistent with algorithms 1 and 4, algorithm 5 always 

produces lower estimates. The consistently different performance of algorithm 5 is probably 

partly attributable to the fact that it is based on data from other geographical regions. It is likely, 

however, that part of the problem is associated also with an approach used in the development of 

algorithm 5 by Mishonov et al. [2003]. In particular, their algorithm has not been developed by 

use of concurrently collected field data. Algorithm 5 is based on relationships between 

seasonally averaged parameters from different regions and years. We omit this algorithm from 

further discussion. 

Additional insight into the differences between the POC estimates from the different 

algorithms is provided in Figure 8. The POC estimates 2, 3, and 4 are plotted against the estimate 

1. These results include the data from the month of May from the 6-year period along the 71ºN 

transect but they are fairly typical for the entire data set examined in this study. Although a small 

systematic difference occurs between the POC estimates 1 and 4, Figure 8a reveals a good 

correlation between these estimates. It is also seen that algorithm 3 produces systematically low 

POC (Figure 8b). Finally, we see that algorithm 2 is erratic in the sense that the POC estimates 
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show large scatter (Figure 8b). We believe that this large scatter results, at least partly, from 

higher sensitivity of algorithm 2 to errors in satellite retrievals of water-leaving radiance at 555 

nm compared to algorithms 1, 3, and 4, which are all based on the band ratios of satellite-derived 

Lwn or Rrs. 

 

4.2. Validation of POC Algorithms 

The validation of ocean color algorithms can be based on a comparison of coincident remote-

sensing data products and in situ data. Such comparison is often referred to as a match-up 

analysis. Unfortunately very few in situ POC data concurrent with HRPT SeaWiFS data are 

presently available in the north polar Atlantic for validating our POC algorithms. Figure 9a 

compares the few in situ POC estimates with the POC estimates obtained from the concurrent 

satellite measurements (i.e., SeaWiFS-derived Lwn) using algorithms 1 and 4. The field data 

considered were collected in 1998 and 1999 on R/V Oceania and they were not used in the 

development of algorithms. Although the number of match-up data points is small, the satellite-

derived POC from algorithm 1 agrees quite well with the in situ POC. This result supports the 

feasibility of estimating POC from algorithm 1 in the study region. The algorithm 4–derived 

POC in the north polar Atlantic is generally lower than the in situ POC (Figure 9a). This is 

consistent with Figure 8a. 

Figure 9b shows similar validation results but the algorithm 4–derived POC from HRPT 

SeaWiFS measurements is compared with concurrent in situ POC found in historical data 

collected in various oceanic regions, including those used in the development of algorithm 4. 

Although there is scatter in the data points, algorithm 4 frequently produces reasonably good 
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estimates of POC. Overall there is no clear systematic deviation between the algorithm 4–derived 

POC and in situ POC in this match-up analysis. 

Although the match-up analysis cannot be perfect in terms of spatial, temporal, and spectral 

matching of satellite and in situ observations, the validation results such as those presented in 

Figure 9 allow us to estimate the final errors in satellite-derived data products. In addition to 

issues associated with imperfect spatial, temporal, and spectral matching, the final errors implied 

by the match-up analysis are affected by various other sources including imperfect radiometric 

calibration of instruments, atmospheric correction, in-water algorithm, effects of solar angle and 

sensor viewing geometry, etc. The mean normalized bias (MNB) and the normalized root mean 

square (RMS) error [e.g., Darecki and Stramski, 2004] for algorithm 4 and the data shown in 

Figure 9b are 2.7% and 35.8%, respectively. For the small number of data points from the north 

polar Atlantic in Figure 9a, MNB = –12% and RMS = 15.9% for our regional algorithm 1, and 

MNB = –34.5% and RMS = 6.5% for algorithm 4. Despite the small number of validation data 

points, Figure 9a suggests that a regional algorithm 1 can perform well in the north polar 

Atlantic. For illustrating seasonal and interannual variability in POC over a 6-year period in the 

study region (section 4.3 below), we selected algorithm 1 as the best choice among the regional 

algorithms examined. 

Because errors in the retrieval of Lwn from satellite signal (caused, for example, by 

atmospheric correction) propagate into the estimation of POC, it is also instructive to recall 

results of match-up analysis for Lwn in our study region [Stramska et al., 2003]. This analysis 

was based on 13 match-up observations and it showed a relatively good agreement between the 

satellite-derived and in situ values of the band ratio Lwn(490)/Lwn(555). The satellite-derived ratio 

was, on average, 6% higher than the in situ ratio. As could have been expected, the agreement 
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was not as good for Lwn at single wavelengths. For example, at 555 nm the satellite-derived Lwn 

was, on average, 14% lower than its in situ counterpart. 

 

4.3. Variability in Surface POC in the North Polar Atlantic 

Using algorithm 1 in conjunction with SeaWiFS imagery from the region of north polar 

Atlantic (70ºN–80ºN and 11ºE–11ºW), we obtained monthly estimates (from April to August) of 

surface POC for each year from 1998 to 2003. Figures 10, 11, 12, 13, and 14 present the results 

for selected transects across the study region (71ºN, 75ºN, and 79ºN). The region is characterized 

by a wide seasonal range of POC with high values occurring from May through the summer and 

lower values in early spring. The lowest POC values of the spring–summer season, generally less 

than 200 mg m–3 and often times less than 50 mg m–3, are observed in April (Figure 10). One 

remarkable feature in April is the POC enhancement west off Spitsbergen (i.e., the eastern part of 

the 79ºN transect), which likely corresponds to the presence of meltwater and early onset of local 

phytoplankton bloom. In contrast, greatly reduced POC concentrations are seen along 75ºN and 

71ºN, where the 6-year average POC for April is less than 100 mg m–3. The interannual 

variability in April POC is large along the entire transects examined. The threefold to fivefold 

differences in POC at any given location between the extreme years are common. The lowest 

April POC was generally observed in 2000 and 2001. For example, in the central area of the 

study region (75ºN between 4ºW and 1ºE) the April POC values in 2001 are as low as 10–20 mg 

m–3. In the same area, POC was as high as 50–60 mg m–3 in 1998 and 2002. The very low April 

values are also observed in 2000 and 2001 in the central part of the 79ºN transect (note that there 

is no data in the western part of that transect because of sea ice). Depending on the particular 

 24



location within the study region, the highest April POC values occurred in different years (but 

excluding 2000 and 2001). 

The POC concentrations in May are significantly higher than in April (Figure 11). The 6-year 

average May POC is greater than 100 mg m–3 in the study region. Particularly high values of 

May POC (> 300 mg m–3 in some years) are observed in the northeastern and the western parts 

of the study region. The May POC is rarely as low as 50 mg m–3. The interannual range of May 

POC is large. In the western part of the 75ºN transect (which includes the East Greenland 

Current), there is a fivefold to over sixfold difference between the lowest POC of 50–60 mg m–3 

that occurred in 2002 and the highest POC (> 350 mg m–3) in 1998, 2000, and 2003. 

In June, POC values remain generally as high as or higher than earlier in the season but the 

interannual variability is smaller (Figure 12). The 6-year average June POC is > 200 mg m–3 

along the entire 75ºN transect with the exception of few data points that range between 180 and 

200 mg m–3. At different parts of the 75ºN transect (including the Greenland Gyre in the central 

part), high values of POC (> 380–400 mg m–3) are reached in different years between 1999 and 

2003. The year 1998 was exceptional because the June POC remained relatively low (< 300 mg 

m–3) along the entire transect at 75ºN. In June we observe remarkably weak interannual 

variability at 71ºN. 

With further progression of the season, POC starts generally to decline. For example, at 75ºN 

the 6-year average July POC is between 160 and 200 mg m–3 with the exception of few values 

that extend to about 220 mg m–3 (Figure 13). At that latitude, the interannual variability in July 

POC is more pronounced than in June POC. Some July POC values at 75ºN are as low as 50–60 

mg m–3 in 1998 and 2003, whereas the highest values range between 310 and 380 mg m–3 in 
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1999 (between 1ºW and 9ºW). Note that by July the sea ice in the northwestern part of the study 

region decayed to the extent that we have satellite data available for that area. 

Further decline, albeit not dramatic, in the 6-year average POC is observed in August for 

most areas within the study region (Figure 14). Compared to the month of July, the interannual 

variability in August POC significantly weakened in the western and central parts of the 75ºN 

transect. However, in the eastern part of the transect the variability is large. At 71ºN the 

interannual variability in the August POC shows some evidence of increase compared to July 

and June. At 79ºN the interannual variability appears to have a comparable range throughout 

much of the summer season. 

It is important to note that the overall patterns of interannual variability of POC in the study 

region are complex in the sense that local minimum (or maximum) POC values observed over 

the 6-year period may correspond to different years depending on the month and location 

considered. For example, in April the minimum values in different parts of the study region were 

predominantly in the years 2000 or 2001. In June, however, the minimum values for many 

locations were in the years 1998, 1999, or 2003. Because the patterns of interannual variability 

are quite intricate depending not only on the geographic location but also on the particular time 

(month) within the spring–summer season, it is useful to look at the interannual variability in 

seasonally averaged POC. These seasonally averaged POC concentrations were calculated by 

averaging five monthly (April through August) POC estimates for each year separately. In 

addition, a 6-year average of seasonally averaged POC was estimated by averaging all the 

seasonal estimates. We present these results in Figure 15 for latitudinal transects in 1 degree 

increments from 70ºN to 79ºN. The variation in seasonal POC by a factor of 2 between the 

extreme years is quite common across the study region. Sporadically, a threefold range is 
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observed, for example at 75ºN between 4ºE and 5ºE. The transects from the southern part of the 

region generally show somewhat lower values of the 6-year average seasonal POC than other 

areas. At these relatively low latitudes, the lowest seasonal POC values most commonly 

correspond to the year 2001. This is not the case, however, at other latitudes. For example, at 

76º–77ºN the lowest seasonal POC estimates were typically obtained in 1998. These results 

show that it is difficult to reveal consistent or simple patterns with regard to which year produced 

the lowest or highest seasonal POC within the study region. 

Some degree of generalization for characterizing the main features of POC variability can be 

achieved by averaging monthly and seasonal POC estimates over the entire study region (Figure 

16). The regionally averaged monthly POC concentrations were lowest in April (Figure 16a) 

with POC as low as 38–45 mg m–3 in 2001 and 2000. The maximum values of regionally 

averaged monthly POC were reached in June in all years except for 1998 when the maximum 

occurred in May. In June 2002, the regionally averaged monthly POC reached 230 mg m–3. In 

different years, the June maximum values are higher by a factor of 2.5–5.3 than the April 

minimum values. The values in August show a substantial reduction compared to the seasonal 

maximum in June; specifically the August values are 60–80% of the June values. The data 

averaged over the entire study region and the entire April–August season for each year in Figure 

16b show that the lowest POC concentrations occurred in 2001 and the highest concentrations 

occurred in 2002 and 1999. The regionally averaged seasonal POC concentrations vary from 

about 135 mg m–3 in 2001 to 170 mg m–3 in 2002. 

 

5. Conclusions 
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This study is an extension of a few previous efforts toward estimating surface concentration 

of POC from satellite ocean color observations [Stramski et al., 1999; Loisel et al., 2001, 2002; 

Mishonov et al., 2003]. By demonstrating the feasibility of remote sensing of POC, these initial 

studies pave the way for further research in this direction. Future success of this application of 

ocean color observations will depend on the continued efforts to develop robust POC algorithms 

and their rigorous validation. Here we used field data collected on four cruises and satellite 

imagery obtained with SeaWiFS sensor in the north polar Atlantic in order to examine and 

validate several approaches for estimating surface POC from observations of ocean color. Our 

analysis suggests that a regional algorithm (referred to as algorithm 1) based on the blue-to-green 

ratio of remote-sensing reflectance (or normalized water-leaving radiance) can be used to obtain 

estimates of POC in the investigated region. Although few appropriate data are presently 

available for validating the POC algorithms, the reasonably good agreement between satellite-

based determinations of POC derived from the band ratio algorithm 1 and coincident ship-based 

determinations of surface POC is encouraging. We also found that the POC estimates from the 

regional algorithm 1 were generally consistent with the POC estimates obtained from a similar 

band ratio algorithm that was developed with independent historical field data collected in 

various oceanic waters other than the north polar Atlantic. 

The application of the regional algorithm 1 to a 6-year record of SeaWiFS data covering the 

spring–summer seasons from 1998 to 2003 provided insight into the POC distributions and their 

seasonal and interannual variability in the north polar Atlantic. The results show a clear increase 

of POC throughout the season. The lowest values generally less than 200 mg m–3, and often 

times less than 50 mg m–3 at some locations, were observed in April. In May and June, POC can 

exceed 300 or even 400 mg m–3 in some parts of the study region. Patterns of interannual 
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variability are intricate as they depend on the geographical location within the study region and 

particular time of year (month) considered. By comparing the results averaged over the entire 

study region and the entire April–August season for each year separately, we found that the 

lowest POC occurred in 2001 and the highest POC occurred in 2002 and 1999. 
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Figure 1. Locations of stations during the cruise of R/V Polarstern in 2003 in the north polar 

Atlantic where water sampling and underwater optical measurements were made. 

 

Figure 2. Example vertical profiles of the particulate beam attenuation coefficient, cp(660) (solid 

and dashed lines), and the corresponding particulate organic carbon (POC) estimates from 

analysis of water samples taken at discrete depths (solid and open circles). The data were 

collected on R/V Polarstern at station 18 (3 May 2003; 0830 GMT; 75.0ºN, 4.12ºW), station 20 

(4 May 2003; 1000 GMT; 75.0ºN, 6.07ºW), station 22 (5 May 2003; 0930 GMT; 75.0ºN, 

9.93ºW), and station 25 (6 May 2003; 1000 GMT; 75.0ºN, 12.63ºW). 

 

Figure 3. (a) Beam attenuation coefficient of particles at 660 nm, cp(660), versus the spectral 

ratio of normalized water-leaving radiance, Lwn(443)/Lwn(555). Data collected in the north polar 

Atlantic in 1998, 1999, and 2000 are indicated by circles, triangles, and squares, respectively. 

The solid line is the best exponential fit to the data. The best fit equation, the squared correlation 

coefficient r2, and the number of observations n are also shown. (b) Particulate organic carbon 

concentration in surface waters as a function of the beam attenuation coefficient, cp(660). Data 

were collected in the north polar Atlantic in 2003. The solid line is the best power function fit to 

the data. The corresponding equation and the values of r2 and n are also shown. (c) Comparison 

of the POC versus cp(660) relationship for our study region (solid line) with similar relationships 

established by various investigators in other regions (dashed lines). The Loisel and Morel [1998] 

line represents their regression on the basis of data from the upper homogeneous layer in the 

north Atlantic and Pacific near Hawaii; the Villafane et al. [1993] line represents an average 
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from their two cruises in the Southern Ocean near Elephant Island; the Marra et al. [1995] line is 

from the northeast Atlantic; the Mishonov et al. [2003] line is from the north Atlantic; and the 

Stramski et al. [1998] line is from the Ross Sea. 

 

Figure 4. (a) Backscattering coefficient of seawater at 589 nm, bb(589), as a function of remote-

sensing reflectance at 555 nm, Rrs(555). Data collected in the north polar Atlantic in 1998, 1999, 

and 2000 are indicated by circles, triangles, and squares, respectively. (b) Particulate organic 

carbon concentration in surface waters as a function of backscattering coefficient, bb(589). Data 

were collected in the north polar Atlantic in 2003. Solid lines represent the best linear fit to the 

data. The corresponding equations and the values of r2 and n are also shown. 

 

Figure 5. Concentration of particulate organic carbon as a function of chlorophyll a 

concentration. Data were collected in the north polar Atlantic in 2003. The solid line is the best 

linear fit to the data. The corresponding equation and the values of r2 and n are also shown. 

 

Figure 6. (a) Particulate organic carbon concentration versus the spectral ratio of remote-sensing 

reflectances, Rrs(490)/Rrs(555). Data were obtained from the public databases of the U. S. Joint 

Global Ocean Flux Study (U.S. JGOFS) and the NASA Sensor Intercomparison for Marine 

Biological and Interdisciplinary Ocean Studies (SIMBIOS) programs. (b) As in Figure 6a but for 

the reflectance ratio Rrs(443)/Rrs(555). Solid lines represent the best power function fit to the 

data. The corresponding equations and the values of r2 and n are also shown. 
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Figure 7. Comparison of particulate organic carbon estimates obtained from the five algorithms. 

The input to the algorithms was the SeaWiFS monthly composite data for May 2003 at transects 

along 79ºN, 75ºN, and 71ºN. POC estimates 1–4 are based on the algorithms presented in 

Figures 3–6. POC estimate 5 is based on the algorithm proposed by Mishonov et al. [2003]. 

 

Figure 8. (a) POC estimate 4 (open circles) and (b) POC estimates 2 (solid triangles) and 3 (open 

triangles) plotted versus POC estimate 1. All these estimates were derived from SeaWiFS 

monthly composites for the month of May from the 6-year period (1998–2003) along 71ºN in the 

north polar Atlantic. 

 

Figure 9. (a) Comparison of in situ POC and satellite-derived POC from algorithms 1 and 4. 

Data represent match-ups for the field measurements taken on the R/V Oceania cruises in 1998 

and 1999 and the satellite measurements (HRPT data) from concurrent SeaWiFS overpasses in 

the north polar Atlantic. POC estimates derived from algorithms 1 and 4 are indicated by solid 

circles and open circles, respectively. (b) Comparison of in situ POC and satellite-derived POC 

from algorithm 4. Data represent match-ups for the concurrent satellite and field measurements 

taken during several research projects in various oceanic regions as indicated. 

 

Figure 10. Spatial and interannual variability of surface POC in the month of April in the north 

polar Atlantic as derived from SeaWiFS data using algorithm 1 shown in Figure 3. The data 

shown as open circles, triangles, and squares indicate monthly POC values. Solid circles indicate 

monthly POC averaged over the 6-year period (1998–2003). All data points represent POC 
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averaged over the grid size of 1º by 1º. For example, the data point at 1ºE and 75ºN represents 

the POC averaged over the area delimited by 74.5ºN, 75.5ºN, 0.5ºE, and 1.5ºE. 

 

Figure 11. As in Figure 10 but for May. 

 

Figure 12. As in Figure 10 but for June. 

 

Figure 13. As in Figure 10 but for July. 

 

Figure 14. As in Figure 10 but for August. 

 

Figure 15. Interannual and spatial variability of seasonally (April through August) averaged 

surface POC as derived from 6 years (1998–2003) of the SeaWiFS data using our algorithm 1. 

(a) Data for the latitudes between 70ºN and 74ºN. (b) Data for the latitudes between 75ºN and 

79ºN. In each graph, we show the seasonally averaged POC for each year (open circles, triangles, 

and squares) and the 6-year average seasonal POC (solid circles). 

 

Figure 16. (a) Regionally averaged monthly POC concentrations for different years plotted as a 

function of month, where 4 is April, 5 is May, 6 is June, 7 is July, and 8 is August. (b) 

Regionally averaged seasonal POC concentrations as a function of year. 
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        Table 1. Summary of the POC Algorithms 

Region and Time of Field Data 
Collection Equationsa 

Algorithm 1 
North polar Atlantic summer (June–

August 1998, 1999, and 2000) 
cp(660) = 1.0976 e-0.7517 Rrs(443)/Rrs(555) 
or 
cp(660) = 1.0976 e-0.7542 Lwn(443)/Lwn(555) 
 

North polar Atlantic spring (April–
May 2003) 

 

POC = 554.82 cp(660)1.3093 

Algorithm 2 
North polar Atlantic summer 
 

bb(589) = 1.282 Rrs(555) – 0.0005368 

North polar Atlantic spring 
 

POC = 179557 bb(589) -137.681 

Algorithm 3 
North polar Atlantic spring 
 

POC = 35.827 Chl + 22.177 

Algorithm 4 
California Current, Atlantic near 

Bermuda, Pacific near Hawaii, 
Arabian Sea, and Southern Ocean 
(NASA SIMBIOS and U.S. JGOFS 
databases) 

POC = 196.164 [Rrs(443)/Rrs(555)]-1.1141 
or 
POC = 232.145 [Rrs(490)/Rrs(555)]-1.4651 

Algorithm 5 
South Atlantic [Mishonov et al., 

2003] (austral summer 1987–1989) 
and North Atlantic (1989–1997) 
and SeaWiFS satellite data from 
south Atlantic (1997–2002) 

POC = 4.586 e6.209 Lwn(555) 

 

aThe units are mg m-3 for POC and Chl, m-1 for cp and bb, mW cm-2 µm-1 sr-1 for Lwn, and sr-1 for 

Rrs. 
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